Volume contents

Volume 108, No. 1 January 2002

Detection of the defoliating pathotype of <i>Verticillium dahliae</i> in infected olive plants by nested PCR	1–13
J. Mercado-Blanco, D. Rodríguez-Jurado, E. Pérez-Artés and R.M. Jiménez-Díaz	
Different classes of resistance to turnip mosaic virus in <i>Brassica rapa</i> J.A. Walsh, R.L. Rusholme, S.L. Hughes, C.E. Jenner, J.M. Bambridge, D.J. Lydiate and S.K. Green	15–20
Genetic control of resistance to the piperidine fungicide piperalin in <i>Ustilago maydis</i> A.N. Markoglou and B.N. Ziogas	21–30
Salicylic acid induced insensitivity to culture filtrate of <i>Fusarium oxysporum</i> f.sp. <i>zingiberi</i> in the calli of <i>Zingiber officinale</i> Roscoe Prachi, T.R. Sharma and B.M. Singh	31–39
Induction of systemic acquired resistance in pepper plants by acibenzolar-S-methyl against bacterial spot disease	41–49
R. Buonaurio, L. Scarponi, M. Ferrara, P. Sidoti and A. Bertona	
Gene flow analysis of <i>Phytophthora porri</i> reveals a new species: <i>Phytophthora brassicae</i> sp. nov. W.A. Man in 't Veld, A.W.A.M de Cock, E. Ilieva and C.A. Lévesque	51–62
Characterization of an extracellular serine protease of <i>Fusarium eumartii</i> and its action on pathogenesis related proteins F. Olivieri, M.E. Zanetti, C.R. Oliva, A.A. Covarrubias and C.A. Casalongué	63–72
Patterns of splash dispersed conidia of Fusarium poae and Fusarium culmorum H.M. Hörberg	73–80
Production of monoclonal antibodies against apple proliferation phytoplasma and their use in serological detection	81–86
N. Loi, P. Ermacora, L. Carraro, R. Osler and T.A. Chen	
Short communication Detection of European isolates of Oat mosaic virus G.R.G. Clover, C. Ratti, C. Rubies-Autonell and C.M. Henry	87–91
Volume 108, No. 2 February 2002	
Studies of host–pathogen interaction between maize and <i>Acremonium strictum</i> from Cameroon A. Tagne, E. Neergaard, H.J. Hansen and C. The	93–102
Suppression of <i>Verticillium</i> wilt in eggplant by some fungal root endophytes K. Narisawa, H. Kawamata, R.S. Currah and T. Hashiba	103–109
Study of defense-related gene expression in grapevine leaves and berries infected with <i>Botrytis cinerea</i> A. Bézier, B. Lambert and F. Baillieul	111–120

Amplification polymorphism among <i>Xanthomonas albilineans</i> strains, using a single oligonucleotide primer	121–130
Y. Jaufeerally-Fakim, J.C. Autrey, I. Toth, M. Daniels and A. Dookun	
An aspartic protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers	131–137
M.G. Guevara, C.R. Oliva, M. Huarte and G.R. Daleo	
Characterisation of isolates of <i>Phytophthora infestans</i> from Hungary	139-146
J. Bakonyi, M. Láday, T. Dula and T. Érsek	
Cultural characteristics, pathogenicity and vegetative compatibility of <i>Fusarium udum</i> isolates from pigeonpea (<i>Cajanus cajan</i> (L.) Millsp.) in Kenya E.K. Kiprop, A.W. Mwang'ombe, J.P. Baudoin, P.M. Kimani and G. Mergeai	147–154
Citrus variegation virus: molecular variability of a portion of the RNA 3 containing the coat protein gene and design of primers for RT-PCR detection	155–162
B. Bennani, C. Mendes, M. Zemzami, H. Azeddoug and G. Nolasco	160 155
Development of stem-base pathogens on different cultivars of winter wheat determined by quantitative PCR	163–177
P. Nicholson, A.S. Turner, S.G. Edwards, G.L. Bateman, L.W. Morgan, D.W. Parry, J. Marshall and M. Nuttall	
Short communication Rapid identification of Clavibacter michiganensis subspecies sepedonicus using two primers random amplified polymorphic DNA (TP-RAPD) fingerprints R. Rivas, E. Velázquez, JL. Palomo, P.F. Mateos, P. García-Benavides and E. Martínez-Molina	179–184
Volume 108, No. 3 March 2002 Study of bacterial determinants involved in the induction of systemic resistance	187–196
in bean by Pseudomonas putida BTP1	
M. Ongena, A. Giger, P. Jacques, J. Dommes and P. Thonart	
Specific and sensitive detection of <i>Phytophthora nicotianae</i> by simple and nested-PCR D. Grote, A. Olmos, A. Kofoet, J.J. Tuset, E. Bertolini and M. Cambra	197-207
B. Grote, Tr. Omres, Tr. Heroet, Viv. Tuset, E. Bertemm und Tr. Cumora	
Nuclear and mitochondrial DNA polymorphisms in three mitotic parthenogenetic	209-220
Nuclear and mitochondrial DNA polymorphisms in three mitotic parthenogenetic <i>Meloidogyne</i> spp.	209–220
Nuclear and mitochondrial DNA polymorphisms in three mitotic parthenogenetic <i>Meloidogyne</i> spp. M. Dautova, H. Overmars, J. Bakker, G. Smant and F.J. Gommers	
Nuclear and mitochondrial DNA polymorphisms in three mitotic parthenogenetic <i>Meloidogyne</i> spp. M. Dautova, H. Overmars, J. Bakker, G. Smant and F.J. Gommers Chlamydospores of <i>Fusarium oxysporum</i> Schlecht f.sp. <i>orthoceras</i> (Appel & Wollenw.) Bilai as inoculum for wheat-flour–kaolin granules to be used for the biological control of <i>Orobanche cumana</i> Wallr.	209–220 221–228
Nuclear and mitochondrial DNA polymorphisms in three mitotic parthenogenetic Meloidogyne spp. M. Dautova, H. Overmars, J. Bakker, G. Smant and F.J. Gommers Chlamydospores of Fusarium oxysporum Schlecht f.sp. orthoceras (Appel & Wollenw.) Bilai as inoculum for wheat-flour-kaolin granules to be used for the biological control of Orobanche cumana Wallr. D. Müller-Stöver, J. Kroschel, H. Thomas and J. Sauerborn	221–228
Nuclear and mitochondrial DNA polymorphisms in three mitotic parthenogenetic Meloidogyne spp. M. Dautova, H. Overmars, J. Bakker, G. Smant and F.J. Gommers Chlamydospores of Fusarium oxysporum Schlecht f.sp. orthoceras (Appel & Wollenw.) Bilai as inoculum for wheat-flour–kaolin granules to be used for the biological control of Orobanche cumana Wallr. D. Müller-Stöver, J. Kroschel, H. Thomas and J. Sauerborn Genetic variation in Melampsora larici-epitea on biomass willows assessed using AFLP M.H. Pei, C. Bayon, C. Ruiz, Z.W. Yuan and T. Hunter	221–228 229–236
Nuclear and mitochondrial DNA polymorphisms in three mitotic parthenogenetic Meloidogyne spp. M. Dautova, H. Overmars, J. Bakker, G. Smant and F.J. Gommers Chlamydospores of Fusarium oxysporum Schlecht f.sp. orthoceras (Appel & Wollenw.) Bilai as inoculum for wheat-flour-kaolin granules to be used for the biological control of Orobanche cumana Wallr. D. Müller-Stöver, J. Kroschel, H. Thomas and J. Sauerborn Genetic variation in Melampsora larici-epitea on biomass willows assessed using AFLP	221–228
Nuclear and mitochondrial DNA polymorphisms in three mitotic parthenogenetic Meloidogyne spp. M. Dautova, H. Overmars, J. Bakker, G. Smant and F.J. Gommers Chlamydospores of Fusarium oxysporum Schlecht f.sp. orthoceras (Appel & Wollenw.) Bilai as inoculum for wheat-flour-kaolin granules to be used for the biological control of Orobanche cumana Wallr. D. Müller-Stöver, J. Kroschel, H. Thomas and J. Sauerborn Genetic variation in Melampsora larici-epitea on biomass willows assessed using AFLP M.H. Pei, C. Bayon, C. Ruiz, Z.W. Yuan and T. Hunter Rapid and specific detection of virulent Pseudomonas avellanae strains by PCR amplification	221–228 229–236

Inactivation of <i>Macrophomina phaseolina</i> propagules during composting and effect of composts on dry root rot severity and on seed yield of clusterbean S. Lodha, S.K. Sharma and R.K. Aggarwal	253–261
The fatty acid composition of <i>Plasmopara halstedii</i> and its taxonomic significance O. Spring and K. Haas	263–267
Genetic relatedness among <i>Pseudomonas avellanae</i> , <i>P. syringae</i> pv. theae and <i>P.s.</i> pv. actinidiae, and their identification M. Scortichini, U. Marchesi and P. Di Prospero	269–278
Short communication Systemic accumulation of 12-oxo-phytodienoic acid in SAR-induced potato plants P. Landgraf, I. Feussner, A. Hunger, D. Scheel and S. Rosahl	279–283
Volume 108, No. 4 May 2002	
Tobacco plants transformed with an untranslatable form of the coat protein gene of the <i>Potato virus Y</i> are resistant to viral infection K. Masmoudi, I. Yacoubi, A. Hassairi, L.N. Elarbi and R. Ellouz	285–292
Asymmetric PCR ELISA: increased sensitivity and reduced costs for the detection of plant viruses	293–298
G. Nolasco, Z. Sequeira, C. Soares, A. Mansinho, A.M. Bailey and C.L. Niblett	
Toxigenic <i>Fusarium</i> species of <i>Liseola</i> section in pre-harvest maize ear rot, and associated mycotoxins in Slovakia	299–306
A. Srobarova, A. Moretti, R. Ferracane, A. Ritieni and A. Logrieco	
Evaluation of parameters accounting for Phomopsis resistance using natural infection and artificial inoculation on recombinant inbred lines from a cross between susceptible and resistant sunflower	307–315
K. Langar, Y. Griveau, F. Kaan, H. Serieys, D. Varès and A. Bervillé	
Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe	317–325
E.G. Wulff, C.M. Mguni, C.N. Mortensen, C.L. Keswani and J. Hockenhull	
Variability of <i>Peronospora sparsa</i> (syn. <i>P. rubi</i>) in Finland as measured by amplified fragment length polymorphism H. Lindqvist-Kreuze, H. Koponen and J.P.T. Valkonen	327–335
Observations of <i>Phytophthora</i> spp. in water recirculation systems in commercial hardy ornamental nursery stock	337–343
K. Themann, S. Werres, R. Lüttmann and HA. Diener	
Mechanisms of phosphate-induced disease resistance in cucumber M. Orober, J. Siegrist and H. Buchenauer	345–353
Identification and detection of <i>Rosellinia necatrix</i> by conventional and real-time Scorpion-PCR L. Schena, F. Nigro and A. Ippolito	355–366
Short communications Development of a general potexvirus detection method R.A.A. van der Vlugt and M. Berendsen	367-371

A glasshouse cropping method for screening lettuce lines for resistance to <i>Sclerotinia</i> sclerotiorum J.M. Whipps, S.P. Budge, S. McClement and D.A.C. Pink	373–378
Improved PCR-based assays for pre-symptomatic diagnosis of light leaf spot and determination of mating type of <i>Pyrenopeziza brassicae</i> on winter oilseed rape S.J. Foster, A.M. Ashby and B.D.L. Fitt	379–383
Volume 108, No. 5 June 2002	
Effect of film-forming polymers on infection of barley with the powdery mildew fungus, <i>Blumeria graminis</i> f. sp. <i>hordei</i> F. Sutherland and D. R. Walters	385–389
Mating behaviour and vegetative compatibility in Spanish populations of <i>Botryotinia fuckeliana</i> J. Delcán and P. Melgarejo	391–400
The use of molecular beacons combined with NASBA for the sensitive detection of Sugarcane yellow leaf virus	401–407
M.C. Gonçalves, M.M. Klerks, M. Verbeek, J.Vega and J.F.J.M. van den Heuvel Effects of plant defence activators on anthracnose disease of cashew	409–420
A.M.Q. Lopez and J.A. Lucas Sensitivity of Red Delicious apple fruit at various phenologic stages to infection by Alternaria alternata and moldy-core control M. Reuveni, D. Sheglov, N. Sheglov, R. Ben-Arie and D. Prusky	421–427
Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads	429–441
V. Ramamoorthy, T. Raguchander and R. Samiyappan Chemical and biological treatments for control of gummy stem blight of greenhouse cucumbers	443–448
R.S. Utkhede and C.A. Koch	
Dominant colonisation of wheat roots by <i>Pseudomonas fluorescens</i> Pf29A and selection of the indigenous microflora in the presence of the take-all fungus A. Chapon, AY. Guillerm, L. Delalande, L. Lebreton and A. Sarniguet	449–459
Multiple selection of potato cyst nematode <i>Globodera pallida</i> virulence on a range of potato species. I. Serial selection on <i>Solanum</i> -hybrids S.J. Turner and C.C. Fleming	461–467
Effect of dose rate of azoxystrobin and metconazole on the development of Fusarium head blight and the accumulation of deoxynivalenol (DON) in wheat grain S.R. Pirgozliev, S.G. Edwards, M.C. Hare and P. Jenkinson	469–478
Short communication Engineering of a single chain variable fragment antibody specific for the Citrus tristeza virus and its expression in Escherichia coli and Nicotiana tabacum P. Galeffi, G. Giunta, S. Guida and C. Cantale	479–483

Volume 108, No. 6 July 2002

Temporal progression of bean common bacterial blight (<i>Xanthomonas campestris</i> pv. <i>phaseoli</i>) in sole and intercropping systems	485–495
C. Fininsa and J. Yuen	
Identification of the beet cyst nematode <i>Heterodera schachtii</i> by PCR S. Amiri, S.A. Subbotin and M. Moens	497–506
New group 16SrIII phytoplasma lineages in Lithuania exhibit rRNA interoperon sequence	507-517
heterogeneity R. Jomantiene, R.E. Davis, D. Valiunas and A. Alminaite	
Relationship between production of the phytotoxin prehelminthosporol and virulence in isolates of the plant pathogenic fungus <i>Bipolaris sorokiniana</i>	519-526
D. Apoga, H.Åkesson, HB. Jansson and G. Odham Effect of inoculum rates and sources of <i>Coniothyrium minitans</i> on control of <i>Sclerotinia sclerotiorum</i> disease in glasshouse lettuce E.E. Jones and J.M. Whipps	527–538
Detection of <i>Pseudomonas syringae</i> pv. <i>aptata</i> in irrigation water retention basins by immunofluorescence colony-staining C.MH. Riffaud and C.E. Morris	539–545
Protective effects against <i>Erwinia amylovora</i> induced by <i>hrp</i> mutants in the whole plant are only partially mimicked in cultivated cells M. Faize, MN. Brisset, JS. Venisse, JP. Paulin and M. Tharaud	547–553
Altered phenotypic response to <i>Peronospora parasitica</i> in <i>Brassica juncea</i> seedlings following prior inoculation with an avirulent or virulent isolate of <i>Albugo candida</i> U.S. Singh, N.I. Nashaat, K.J. Doughty and R.P. Awasthi	555–564
Evaluation of tests to determine resistance of <i>Zantedeschia</i> spp. (Araceae) to soft rot caused by <i>Erwinia carotovora</i> subsp. <i>carotovora</i> R.C. Snijder and J.M. van Tuyl	565–571
Variation in pathogenicity associated with the genetic diversity of <i>Fusarium graminearum</i> J.P. Carter, H.N. Rezanoor, D. Holden, A.E. Desjardins, R.D. Plattner and P. Nicholson	573–583
Emergence of resistance-breaking isolates of <i>Rice yellow mottle virus</i> during serial inoculations D. Fargette, A. Pinel, O. Traoré, A. Ghesquière and G. Konaté	585–591
Short communication Mating relationships between isolates of <i>Phaeosphaeria nodorum</i> , (anamorph <i>Stagonospora nodorum</i>) from geographical locations P. Halama	593-596

Volume 108, No. 7 September 2002

Foreword	vii
A.F. Logrieco, L. Corazza and A. Bottalico	
Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe	597-609
A. Logrieco, G. Mulè, A. Moretti and A. Bottalico	

Toxigenic $Fusarium$ species and mycotoxins associated with head blight in small-grain cereals in Europe	611–624
A. Bottalico and G. Perrone	
Deoxynivalenol, nivalenol and moniliformin in wheat samples with head blight (scab) symptoms in Poland (1998–2000)	625-630
M. Tomczak, H. Wiśniewska, Ł. Stępień, M. Kostecki, J. Chełkowski and P. Goliński	
Ochratoxin A in cereals, foodstuffs and human plasma A. Rizzo, M. Eskola and F. Atroshi	631–637
Ochratoxin A in grapes and wine P. Battilani and A. Pietri	639–643
Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with <i>Fusarium</i> species under field conditions	645-651
M. Pascale, A. Visconti and J. Chelkowski	
Studies on the infection process of <i>Fusarium culmorum</i> in wheat spikes: Degradation of host cell wall components and localization of trichothecene toxins in infected tissue	653–660
Z. Kang and H. Buchenauer	
Production of beauvericin by different races of Fusarium oxysporum f. sp. melonis, the Fusarium wilt agent of muskmelon	661–666
A. Moretti, A. Belisario, A. Tafuri, A. Ritieni, L. Corazza and A. Logrieco	
Epidemiology of <i>Fusarium</i> infection and deoxynivalenol content in winter wheat in the Rhineland, Germany	667–673
B. Birzele, A. Meier, H. Hindorf, J. Krämer and HW. Dehne	
Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight	675–684
Á. Mesterházy	
Relationship between growth and mycotoxin production by <i>Fusarium</i> species, biocides and environment	685–690
N. Magan, R. Hope, A. Colleate and E.S. Baxter	
Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of <i>Fusarium</i>	691–698
R.H. Proctor, A.E. Desjardins, S.P. McCormick, R.D. Plattner, N.J. Alexander and D.W. Brown	
Saccharomyces cerevisae and Arabidopsis thaliana: Useful model systems for the identification of molecular mechanisms involved in resistance of plants to toxins R. Mitterbauer and G. Adam	699–703
Mycotoxin genetics and gene clusters	705–711
G.S. Sidhu	705-711
Biosynthesis of depsipeptide mycotoxins in Fusarium	713–718
T. Hornbogen, M. Glinski and R. Zocher	
Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily I. Stergiopoulos, LH. Zwiers and M.A. De Waard	719–734

Volume 108, No. 8 October 2002

The effect of different levels of beet cyst nematodes (<i>Heterodera schachtii</i>) and beet necrotic yellow vein virus (BNYVV) on single and double resistant sugar beet cultivars W. Heijbroek, R.G. Munning and A.C.P.M. van Swaaij	735–744
The distribution and spread of sorghum downy mildew in sorghum and maize fields in Nigeria and Zimbabwe C.H. Bock and M.J. Jeger	745–753
Rapid and homogenous detection of <i>Apple stem pitting</i> virus by RT-PCR and a fluorogenic 3' minor groove binder-DNA probe M.A. Salmon, M. Vendrame, J. Kummert and P. Lepoivre	755–762
Genotype × environment effects on severity of cassava bacterial blight disease caused by <i>Xanthomonas axonopodis</i> pv. manihotis A.G.O. Dixon, J.M. Ngeve and E.N. Nukenine	763–770
Pathogenicity and virulence of the two Dutch VCGs of Verticillium dahliae to woody ornamentals J.C. Goud and A.J. Termorshuizen	771–782
Characterization of <i>Rhizoctonia solani</i> associated with soybean in Brazil R.C. Fenille, N.L. de Souza and E.E. Kuramae	783–792
The β-tubulin gene is a useful target for PCR-based detection of an albino <i>Ophiostoma</i> piliferum used in biological control of sapstain S. Schroeder, Seong Hwan Kim, Sangwon Lee, K. Sterflinger and C. Breuil	793–801
Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads W.M. Wanjiru, Kang Zhensheng and H. Buchenauer	803-810
Short communication Identification of resistance to common bacterial blight disease on bean genotypes grown in Turkey A. Dursun, M.F. Dönmez and F. Şahin	811-813
Sequencing of Australian Grapevine Viroid and Yellow Speckle Viroid isolated from a Tunisian grapevine without passage in an indicator plant A. Elleuch, H. Fakhfakh, M. Pelchat, P. Landry, M. Marrakchi and JP. Perreault	815–820
Volume 108, No. 9 November 2002	
Reduction of bacterial speck (<i>Pseudomonas syringae</i> pv. <i>tomato</i>) of tomato by combined treatments of plant growth-promoting bacterium, <i>Azospirillum brasilense</i> , streptomycin sulfate, and chemo-thermal seed treatment Y. Bashan and L.E. de-Bashan	821-829
Sequence analysis and detection of <i>Ralstonia solanacearum</i> by multiplex PCR amplification of 16S-23S ribosomal intergenic spacer region with internal positive control KH. Pastrik, J.G. Elphinstone and R. Pukall	831–842

A natural population of recombinant <i>Plum pox virus</i> is viable and competitive under field conditions	843–853
M. Glasa, V. Marie-Jeanne, G. Labonne, Z. Šubr, O. Kúdela and JB. Quiot	
Detection of <i>Phytophthora nicotianae</i> and <i>P. citrophthora</i> in citrus roots and soils by nested PCR A. Ippolito, L. Schena and F. Nigro	855–868
Vegetative compatibility grouping of <i>Fusarium oxysporum</i> f. sp. <i>gladioli</i> from saffron P. Di Primo, C. Cappelli and T. Katan	869–875
A polymerase chain reaction (PCR) assay for the detection of inoculum of Sclerotinia sclerotiorum L. Fragmen, F. Word, C. Colderon and A. McCortney.	877–886
J. Freeman, E. Ward, C. Calderon and A. McCartney A RT-PCR assay combined with RFLP analysis for detection and differentiation of isolates of <i>Pepino mosaic virus</i> (PepMV) from tomato P.V. Martínez-Culebras, A. Lázaro, P. Abad Campos and C. Jordá	887–892
Biological and physical constraints on maize production in the Humid Forest and Western Highlands of Cameroon Z. Ngoko, K.F. Cardwell, W.F.O. Marasas, M.J. Wingfield, R. Ndemah and F. Schulthess	893–902
Short communication Characterization of Plum pox virus PPV-BT-H isolated from naturally infected blackthorn (Prunus spinosa L.) in Hungary P. Salamon and L. Palkovics	903–907
PCR-RFLP and sequence data delineate three <i>Diaporthe</i> species associated with stone and pome fruit trees in South Africa	909–912
N. Moleleki, O. Preisig, M.J. Wingfield, P.W. Crous and B.D. Wingfield	
Volume contents	913-920
Author index	921-923